Размеры платы выбраны с таким расчетом, чтобы она вместе с батареей «Крона» или 7Д-0,1 разместилась в корпусе приемника, собираемого из набора деталей «Юность». Круглое отверстие в средней части платы предназначено для магнитной системы малогабаритной динамической головки мощностью 0,1–0,2 Вт (0,1ГД-6, 0,1ГД-12, 0,2ГД-1), укрепленной на лицевой панели корпуса, четыре овальных отверстия — для винтов крепления платы в корпусе. Все резисторы типа МЛТ-0,125 (можно МЛТ-0,25), электролитические конденсаторы К50-6, переменный резистор R19 с выключателем питания S1 — СПЗ-3В. Резисторы R6, R8, R9 и R10 смонтированы в вертикальном положении. Один из транзисторов сборки V3 (выводы 9-11) не используется.
В усилителе 3Ч и стабилизаторе напряжения можно использовать транзисторы серий МП39-МП42 (V6, V9, V5), МП37 или МП38 (V7, V8) и стабилитрон Д814А (V4). Транзисторные сборки 217НТ2 можно без каких-либо изменений в схеме или конструкции заменить на 217НТ1, 217НТЗ или на 243НТ1-3.
Вообще же вместо транзисторных сборок в музыкальном автомате можно использовать кремниевые n-р-n транзисторы серий КТ315, КТ312 с любым буквенным индексом. Но тогда размеры монтажной платы придется увеличить и, кроме того, переработать схему токонесущих печатных проводников, относящихся к мультивибраторам соловья.
Монтаж же может быть навесным (если нет фольгированного материала и хлорного железа для травления платы), да и конструкция в целом иной — все зависит от имеющихся деталей и того, как ты намерен использовать эту музыкальную игрушку. В таком случае и динамическая головка может быть мощнее, например 1ГД-40Р, чтобы повысить громкость звучания соловья.
Налаживание усилителя 3Ч тебе знакомо по ранее конструируемым бестрансформаторным усилителям с двухтактным выходным каскадом. Оно сводится к подбору резистора R28 таким образом, чтобы на эмиттерах транзисторов V8 и V9 выходного каскада было напряжение, равное половине напряжения источника питания. Проверить качество работы усилителя в целом можно путем воспроизведения грамзаписи, подключив звукосниматель параллельно резистору R22.
Налаживание основы соловья заключается в проверке работы мультивибраторов и корректировании его трелей. Оно осуществляется изменением частот генерируемых мультивибраторами импульсов путем подбора входящих в них конденсаторов, а в мультивибраторе на транзисторах V1.1 и V1.2 — подбором резисторов R2 и R3 в их базовых цепях.
Для контроля работы мультивибраторов используй вольтметр постоянного тока с относительным входным сопротивлением не менее 10 кОм/В, например вольтметр твоего миллиампервольтомметра или транзисторный вольтметр (о нем я расскажу в следующей беседе). По отклонению стрелки вольтметра от нулевой отметки можно ориентировочно судить о периоде и длительности импульсов, генерируемых мультивибраторами.
Перед включением питания на монтажной плате тремя временными проволочными перемычками соедини базу и эмиттер транзистора V2.4, эмиттеры транзисторов V1.4 и V2.1, а также эмиттеры транзисторов V1.1 и V1.2. Если мультивибратор на транзисторах V3.1 и V3.2 исправен, динамическая головка В1 должна воспроизводить звуковой сигнал высокого тона, соответствующий частоте 4–5 кГц.
После этого удали первую проволочную перемычку, соединяющую выводы 9 и 11 сборки V2 и проверь мультивибратор на транзисторах V2.3, V2.4. Если он исправен, то звук основного тона становится прерывистым с частотой около 5 Гц. При этом стрелка вольтметра, подключенного к коллектору транзистора V2.4 (вывод 10 сборки V2), должна пять раз в секунду отклониться от нулевой отметки шкалы.
Затем удали вторую проволочную перемычку (соединяющую вывод 11 сборки V1 с выводом 2 сборки V2) и проверь работоспособность мультивибратора на транзисторах V1.4 и V2.1. Вольтметр подключи к коллектору транзистора V1.4 (вывод 10 сборки V1) и подбором конденсаторов С3, С4 добивайся периода следования положительных импульсов около 1 с и длительности импульса 0,3 с. При этом динамическая головка в течение каждой секунды должна издавать звук, похожий на кудахтанье курицы: «куд-куд-куда-а», «куд-куд-куда-а» и т. д.
Далее проверяй мультивибратор на транзисторах V1.1 и V1.2, для чего вольтметр подключи к коллектору транзистора V1.1 (вывод 1 сборки V1). Здесь подбором сопротивлений резисторов R2, R3 и емкостей конденсаторов C1, С2 добивайся периода следования положительных импульсов 6–8 с при длительности импульса 2,5–3 с. После этого удали третью проволочную перемычку (соединяющую выводы 2 и 5 сборки V1) и, если необходимо, окончательно скорректируй основной тон трели подбором конденсаторов С7 и С8. Сопротивление резистора R2 должно составлять 120–130 кОм, а резистора R3 — 91-100 кОм.
Резистор R20, образующий с переменным резистором R19 нагрузку транзистора V3.3, подбирай в зависимости от примененной динамической головки. Его сопротивление должно быть таким, чтобы при наибольшей громкости звучания головки, когда движок резистора R19 находится в нижнем (по схеме) положении, усилитель 3Ч не перегружался и выходные транзисторы V8 и V9 не грелись.
Какие изменения можно внести в этот электронный автомат? Кроме замены транзисторных сборок (о чем я уже говорил) его можно упростить, исключив усилитель 3Ч. Для этого в коллекторную цепь транзистора V3.3 надо вместо резисторов R19 и R20 включить телефонный капсюль ДЭМ-4М или один из излучателей головного телефона. Но, разумеется, громкость трелей при этом значительно снизится.
Если такую музыкальную игрушку предполагаешь подарить сестре, брату или школьному товарищу, то придется подумать и о ее внешнем оформлении.
Вариантов может быть много. Например, можно оформить в виде музыкальной шкатулки, из которой при открывании крышки (в этот момент замыкаются замаскированные контакты выключателя питания) начинают звучать трели «соловья».
При использовании, «соловья» в качестве квартирного звонка, включать его можно с помощью реле времени, опыты с которым ты проводил в предыдущей беседе (см. рис. 259). Время, в течение которого соловей будет петь, будет зависеть от емкости времязадающего конденсатора реле времени. В таком случае устройство целесообразно питать от сети переменного тока через выпрямитель со стабилизатором выходного напряжения.
* * *
Беседа 18
ТВОЯ ИЗМЕРИТЕЛЬНАЯ ЛАБОРАТОРИЯ
Этот прибор позволит с достаточной для тебя точностью измерять сопротивления резисторов (R), емкости конденсаторов (С) и индуктивности катушек (L), наиболее часто применяемых в колебательных контурах, высокочастотных дросселей. Его основой служит измерительный мост, в одну из диагоналей которого включают источник тока, а в другую - индикатор тока, по которому оценивают электрические параметры этих радиодеталей.
Схему такого моста для измерения сопротивлений ты видишь на рис. 281, а. Измерительный мост состоит из четырех резисторов, образующих его четыре плеча: Rx - резистор, сопротивление которого измеряем; Rэ - эталонный, т. е. образцовый резистор, сопротивление которого известно; R1 и R2 — резисторы, сопротивления которых подбирают при измерении. Индикатором может быть микроамперметр с нулевой отметкой в середине шкалы. Когда отношение сопротивлений резисторов Rx и Rэ равно отношению сопротивлений резисторов R1 и R2, через индикатор ток не идет, и его стрелка находится против нулевой отметки шкалы. При этом говорят, что измерительный мост сбалансирован, т. е. электрически уравновешен. Но стоит изменить сопротивление одного из плеч моста, заменив, например, резистор Rx резистором другого номинала, как произойдет перераспределение токов в плечах моста и он окажется разбалансированным — стрелка индикатора отклонится в одну или иную сторону от нулевой отметки на шкале в зависимости от нового соотношения сопротивлений плеч моста. Чтобы мост снова сбалансировать, надо соответственно изменить сопротивления одного из трех других плеч.
Рис. 281. Мосты для измерения сопротивлений (а, б) и емкостей (в)
Поскольку сопротивления образцового Rэ и подбираемых резисторов R1 и R2 известны, сопротивление проверяемого резистора Rx нетрудно подсчитать по такой формуле: Rх = RэR1/R2.
Допустим, что Rx = 10 кОм, R1 = 2 кОм, a R2 = 1 кОм. В этом случае сопротивление измеряемого резистора Rx будет: Rx = 10·2/1 = 20 кОм.
Резисторы R1 и R2 можно заменить одним переменным резистором, как это показано на рис. 281, б. Здесь соотношение сопротивлений плеч моста, а значит, и его балансировка достигаются перемещением движка переменного резистора. А если против ручки этого резистора будет заранее размеченная шкала, отпадет необходимость в расчете сопротивления измеряемого резистора Rx. Переменный резистор в этом случае называют реохордом, а измерительный мост — реохордным мостом.
Рассмотрим рис. 281, в, на котором изображена схема такого же моста, но предназначенного для измерения емкостей конденсаторов. Здесь Сэ — образцовый конденсатор; Сх — измеряемый конденсатор, а переменный резистор (R1 + R2) — реохорд, которым балансируют мост. Источником питания моста служит генератор переменного тока G, обозначенный на схеме знаком синусоиды в кружке. На этот ток должен реагировать и индикатор моста. Емкости конденсаторов измеряют так же, как и сопротивления резисторов — путем балансировки моста и определения емкости по шкале реохорда.
Такой мост можно использовать и для измерения индуктивностей катушек колебательных контуров или дросселей высокой частоты, если в нем образцовый конденсатор заменить образцовой катушкой Lэ, а вместо конденсатора Сх включить в мост измеряемую катушку индуктивности Lx.
Как видишь, принцип измерения сопротивлений, емкостей и индуктивностей деталей одинаков. Разница лишь в источнике питания и индикаторе моста.
А нельзя ли, спросишь ты, при любых измерениях питать мост переменным током. Можно! Например, переменным током звуковой частоты. В этом случае роль индикатора могут выполнять головные телефоны: баланс моста фиксируют по наименьшему звуку или пропаданию его. Такой прибор я и предлагаю для твоей лаборатории.
Принципиальная схема измерителя RCL показана на рис. 282.
Рис. 282. Схема измерителя RCL